Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells.
نویسندگان
چکیده
Myc and Mad family proteins play opposing roles in the control of cell growth and proliferation. We have visualized the subcellular locations of complexes formed by Myc/Max/Mad family proteins using bimolecular fluorescence complementation (BiFC) analysis. Max was recruited to different subnuclear locations by interactions with Myc versus Mad family members. Complexes formed by Max with Mxi1, Mad3, or Mad4 were enriched in nuclear foci, whereas complexes formed with Myc were more uniformly distributed in the nucleoplasm. Mad4 was localized to the cytoplasm when it was expressed separately, and Mad4 was recruited to the nucleus through dimerization with Max. The cytoplasmic localization of Mad4 was determined by a CRM1-dependent nuclear export signal located near the amino terminus. We compared the relative efficiencies of complex formation among Myc, Max, and Mad family proteins in living cells using multicolor BiFC analysis. Max formed heterodimers with the basic helix-loop-helix leucine zipper (bHLHZIP) domain of Myc (bMyc) more efficiently than it formed homodimers. Replacement of two amino acid residues in the leucine zipper of Max reversed the relative efficiencies of homo- and heterodimerization in cells. Surprisingly, Mad3 formed complexes with Max less efficiently than bMyc, whereas Mad4 formed complexes with Max more efficiently than bMyc. The distinct subcellular locations and the differences between the efficiencies of dimerization with Max indicate that Mad3 and Mad4 are likely to modulate transcription activation by Myc at least in part through distinct mechanisms.
منابع مشابه
The Myc/Max/Mad Transcription Factor Network - ReadingSample
Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raisemore questions regarding Myc biology. In this review, we focus on the lessons provided by the...
متن کاملStructural aspects of interactions within the Myc/Max/Mad network.
Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raise more questions regarding Myc biology. In this review, we focus on the lessons provided by th...
متن کاملSequence signatures and the probabilistic identification of proteins in the Myc-Max-Mad network.
Accurate identification of specific groups of proteins by their amino acid sequence is an important goal in genome research. Here we combine information theory with fuzzy logic search procedures to identify sequence signatures or predictive motifs for members of the Myc-Max-Mad transcription factor network. Myc is a well known oncoprotein, and this family is involved in cell proliferation, apop...
متن کاملX-Ray Structures of Myc-Max and Mad-Max Recognizing DNA Molecular Bases of Regulation by Proto-Oncogenic Transcription Factors
X-ray structures of the basic/helix-loop-helix/leucine zipper (bHLHZ) domains of Myc-Max and Mad-Max heterodimers bound to their common DNA target (Enhancer or E box hexanucleotide, 5'-CACGTG-3') have been determined at 1.9 A and 2.0 A resolution, respectively. E box recognition by these two structurally similar transcription factor pairs determines whether a cell will divide and proliferate (M...
متن کاملMax is acetylated by p300 at several nuclear localization residues.
Max is a ubiquitous transcription factor with a bHLHZip [basic HLH (helix-loop-helix) leucine zipper] DNA-binding/dimerization domain and the central component of the Myc/Max/Mad transcription factor network that controls cell growth, proliferation, differentiation and apoptotic cell death in metazoans. Max is the obligatory DNA-binding and dimerization partner for all the bHLHZip regulators of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 24 10 شماره
صفحات -
تاریخ انتشار 2004